Señal estacionaria periódica/cuasi periódica

De musiki
Saltar a: navegación, buscar
Señal estacionaria periódica/cuasi periódica
Definición breve: Función que se repite exactamente igual en tiempos iguales se denomina periódica y las cuasi periódicas son aproximaciones a las señales periódicas.
Tema: Señales acústicas
Subtema: señal estacionaria periódica/cuasi periódica:
Gráficos
Cs-04-tipos de señales (Copiar).jpg
Cs-05-tipos de señales (Copiar).jpg
Ejemplo sonoro: https://www.youtube.com/watch?v=I2FU7KNKciM&list=PLkrghPepzsJz06-lGkb2OZ1tu5bkGsf0Z&index=1


Señales estacionarias

son aquellas cuyas propiedades no varían en el tiempo. Las señales acústicas estacionarias se dividen en dos grupos: las deterministas y las aleatorias estacionarias. Las señales periódicas y cuasi periódicas pertenecen al grupo de las deterministas. Cs-02-tipos de señales.jpg

ejemplo audiovisual de una señal estacionaria periódica simple.

Señales periódicas

Cualquier función que se repita exactamente igual en tiempos iguales se denomina periódica, y el tiempo que lleva cada repetición toma el nombre de periodo de la misma. Por ser un intervalo temporal se mide en segundos, nosotros usaremos la letra "p"aqui para designarlo,siendo utilizada sin embargo la letra“t” (time/tiempo en inglés) para designarlo en la mayoría de los tratados especializados.

en el siguiente gráfico se puede apreciar un ejemplo simple tomando el tic tac de un reloj. en este gráfico temporal podemos observar que:

  • a-el tiempo sucede de izquierda a derecha a una velocidad constante.
  • b-hay seis líneas verticales que conforman cinco periodos de un segundo

Cs-04-tipos de señales.jpg

ejemplo audiovisual y gráfico espectral de una señal estacionaria periódica emitida por un violín(nota si)analizada mediante la transformada de fourier.

 Ejemplo   donde se puede apreciar su accionar en la música:
 Igor Stravinsky “dúo concertante: Dithyrambe” 

Señales cuasi periódicas

Las señales cuasi periódicas son, aproximaciones a las señales periódicas(o una combinación de señales periódicas). Tanto el comportamiento de las señales periódicas como el de las cuasi periódicas deterministas puede ser predicho de manera exacta en cualquier instante a partir del conocimiento de sus valores iniciales.


ejemplo audiovisual y gráfico espectral de una señal estacionaria cuasi periódica emitida por una campana analizada mediante la transformada de fourier.

ejemplo audiovisual y gráfico espectral de una señal estacionaria cuasi periódica realizada por Federico Miyara .

Shostakovich - Symphony No 11 in G minor, Op 103:

en el minuto 59:20 hasta el final de la obra, se puede apreciar el uso de señeles estacionarias cuasi periódicas emitidas por dos campanas.

otros ejmplos

Bilas de Mark Pulido -Monestir de Pedralbes de Barcelona: campanas planas de altas frecuencias vibratorias

Campanas tubulares

Referencias

Gustavo Basso: "análisis espectral" ediciones al margen 2001.

https://www.youtube.com/watch?v=I2FU7KNKciM&list=PLkrghPepzsJz06-lGkb2OZ1tu5bkGsf0Z